miyoshi のすべての投稿

A15_ADVENTURE_on_Windows解析例(2)

ADVENTURE_CADを利用して形状作成をして応力解析をしたのでご紹介します。

使用したADVENTURE_on_Windowsのバージョンは先日公開されたVer. 0.43bです。

使用したマシンの仕様は、以下です。
CPU:Intel® Core(TM) i5-7200U @2.50GHz 2.70GHz
OS:Windows 10 64bit
メモリ:DDR4-2133

解析ケース名:ellipticalShellTension.iag
形状記述ファイル名:ellipticalShell.gm3d
注意:単位は特に指定しないので、暗黙の了解です。

形状の特徴:
空洞が有る。
回転体である。真円では無く、正12角形。

sheet 10  0 0 0  0 0 1  4 0 1  6 0 3  4 0 5  0 0 5  0 0 6  4 0 6  7 0 3  4 0 0
revolve 0 0 0  0 0 10 12

1行目で10点から構成されるスケッチ(2Dの閉じた区分直線)を記述します。sheetがラベル、10が点数、その後にxyz座標値が10個続きます。次の行でz軸を回転軸としているのですが、xの値が零を跨がないように気を付けます。yの値は全て零としています。


図-0 sheetコマンドで作成した2D形状図

2行目で回転操作をします。revolveがラベル、その後に回転軸を構成する2点を記述し、最後に正何角形で近似するかという角数を指定します。

節点間隔:0.5mm

を指定しました。粗密分布は四面体要素を切る時は、利用出来ますが、表面パッチを作成する時には基本節点間隔以外は無視されます。

要素数 13,303
節点数 24,344

でした。

ヤング率:200,000MPa
ポアソン比:0.3

としました。

境界条件面認識パラメータ:デフォルト値
拘束:z=最小値の面をxyz拘束
荷重:z=最大値の面をz方向に+1Pa

領域分割パラメータ:デフォルト値
ソルバーパラメータ:デフォルト値
表面パッチ生成時間:1秒未満
四面体二次要素生成時間:11秒
領域分割計算時間:1秒未満
ソルバー計算時間:3秒
メモリ使用量:
ケースデータ保持:+0.1GB
四面体二次要素生成時:+0.1GB
ソルバー実行時:+0.1GB
可視化表示時:+0.1GB

結果を示します。


図-1 z方向変位、拡大率413倍


図-2 相当応力(節点)、z上方斜めから


図-3 最小主応力


図-4 最大主応力


図-5 相当応力(節点)、z下方斜めから


図-6 相当応力(節点)、Meshman_ParticleViewer_HPCを使用した断面図

 

DL_02 Pythonのインストール

前回紹介した「Pythonによる機械学習入門」(以下テキスト1)を少し読み進めます。

兎に角時代はPythonです。AIなら何がなんでもという感じです。それは否めないでしょう。型のチェックが無い等Javaプログラマーに取って余り好きになれない(スクリプト)言語ですが、仕方が無いですね。

以前Pythonでコーディングした時は、EclipseにPyDevのプラグインを導入して使いましたが、どうも主流では無いようです。

さてインストール方法です。この手の開発は大抵Linuxの方が便利だったりするので、OSはUbuntu 16.04LTSを使う事にしました。PythonのインストールはAnacondaがデファクトスタンダードのようです。

テキスト1のp.4に従いLinux版をインストールしました。2017/12/11現在、Python 3.6.3です。図1-3にはGUIのインストールウィザードが示されていますが、そのような物は表示されず、CUIでのインストールでした。

インストールは此処迄とします。

Pythonにはコンソールによるコマンド実行以外に対話環境や統合環境がいくつか用意されており、それの幾つかはAnacondaをインストールする事で自動的にインストールされます。個々の環境の説明はテキスト1に委ねます。

本日は此処迄です。

 

 

DL_01 入門書の購入

機械学習と深層学習の勉強を始めます。今これらを始めないといかんという切迫感を持っています。世の中の流れが今後大きく変わって行くと思います。インターネットが利用可能になった時も同じ印象を受けました。
単なる利用者であれば、ぽかんとしていても良いでしょうが、情報発信側、コンテンツ制作側、アプリ制作側であり続ける為にはこの技術のマスターは必須だと思います。

では何から始めるかですが、誰でも使えるようなツールを使っていても本質は何も分からないと考えております。この辺はかなり迷いました。つまりパーセプトロンから始めるといつになったら実務的な計算が出来る所迄辿り着けるのだろうという不安が有りました。

しかし有る高名な先生に「理論を勉強しないと駄目ですか?」と聞いたら「そうだ」との答えでしたので、覚悟を決めました。
最初に以下の本を買いました。

「Pythonによる機械学習入門」を選択した理由は、FOCUSさんの講習会のテキストとして採用されていた為です。6万円プラス消費税を払えば、私のブログより効率的に学べる事でしょう。

「ゼロから作るDeep Learning」は上の本に関する情報をネットで調べている時に出くわしました。「ゼロから作る」に惹かれて買いました。しかしこの本のAmazonレビューによると上の本の方が分かり易いとの事だったので、上の本も購入しました。

本日は此処迄とします。

 

A11_AdvOnWin 次のリリース予定

本日慶應義塾大学矢上キャンパスで「日本機械学会計算力学技術者認定試験付帯講習(技能編)」が開催されて、弊社の三好と淀がそれぞれ講師とアシスタントを務めました。
最後の質疑応答の時間中にADVENTURE_on_Windows Ver. 0.43bのリリースを年内に行う事をアナウンスしました。
改訂内容はバグフィックスを予定しております。

現在公開されている版はWindows 10でも利用可能です。又現在公開されている版に付属しているADVENTURE_Solidのバージョンは1.21です。

 

 

 

P01_第33回中部CAE懇話会ベンダー講演において三好が講演

来る2017年11月10日(金)に名古屋市工業研究所 管理棟 第2会議室にて開催される第33回中部CAE懇話会において、弊社三好が「インサイトにおける構造系のCAE勉強ソリューションのご紹介」と題してベンダー講演します。
ご興味の有る方は是非ご参加下さい。

講演概要は以下の通りです。
インサイトでは、CAE教育を事業の柱として位置付けて来ました。CAEソフトウェアを適切に使いこなす為には、CAEの知識は必須ですが、何をどう勉強するかについて適切なガイドラインが無いようです。弊社がご提供するCAE教育サービス(ADVENTURE関連の講習会、材料力学とFEMを同時に学ぶ講習会、固体力学の資格取得支援の講習会等)の内容をご紹介し、更に構造系を主にCAE学習の実践方法等について提言します。

S1_005計算力学固体1級講習会2日目を開催-2級の復習について

昨日計算力学技術者固体力学1級の講習会の2日目を開催しました。
受講者は2名でした。
いずれも昨年2級を受かった方でしたが、既に2級の学習内容をかなり忘れているとの事でした。
ちなみに2級については弊社テキストを購入されていませんし、弊社講習会も受講されていません。

2級の事を忘れているのでは無いかという事は1日目の講習の中で感じていたので、昨日確認した所「そうだ」との事でした。2級の問題集を読み返したが忘れている事が多かったとの事です。
1級の学習は2級の知識が前提となっている部分が多いので、その知識が曖昧だったり記憶に無いままで1級の学習をしても消化不良を起こす事が懸念されます。

昨日はその対策として2級の標準問題集の索引を印刷してお渡ししました。又本ブログでも公開している2級の重要単語集を印刷してお渡ししました。2級の復習をする時は、大抵の場合、xxという単語に関連してどのような知識が2級で述べられていたか調べるという状況が予想されます。その時に索引が有るのと無いのとでは大違いです。索引が無ければ一所懸命標準問題集のこれはという所をめくってその単語を探す事になります。その行為自体無駄では無いのですが、効率という点ではいまいちです。索引があれば瞬時にその単語が言及されているページを読む事が出来るので、知りたい知識にすぐに辿り着けます。

この索引は単独で販売する事も考えてますので、欲しい方はご連絡下さい。

1級標準問題集の索引は現在作成中です。

後、勉強の方法ですが、自分が何を学習したかを電子媒体に記録する事を強くお勧めします。それはエクセルであってもワードであっても構いません。これについては別の記事を起こしたいと思います。

S1_004計算力学固体1級標準問題集第8版調査_問題数

今弊社で持っているのは第8版(刷は無記入)2011/09/30です。2017年版は第9版4刷みたいですがまだ入手出来てませんので、第8版の各章の問題数を調査しました。

章番号 章タイトル 第8版
1 非線形解析における応力と歪 15
2 材料非線形(弾塑性、クリープ、粘弾性) 30
3 幾何学的非線形 16
4 境界非線形(接触) 11
5 破壊力学・疲労解析 23
6 動的解析 17
7 伝熱解析 11
8 要素テクノロジー 16
9 数値解析法 15
10 解析の検証と品質保証 21
11 情報処理 16

S115:機械学会計算力学技術者合格対策テキスト2級/1級販売状況(2017/4/27以降)

日本機械学会 計算力学技術者1級・2級 (固体力学分野) 合格対策テキストの今年4月27日以降の販売状況です。

(9/14追記:1件抜けが有りましたので、追記します)

皆様ご健闘をお祈りします。

番号 注文日 個人/会社 備考
1 2  2017/06/21 個人 テキストのみ。
2 1 2017/06/21 個人 テキストのみ。1と同じお客様。
3 1 2017/07/07 会社 5日間コース受講
4 1 2017/07/07 会社 5日間コース受講。3と同じ会社所属。
5 2 2017/08/19 個人 テキストのみ。
6 1 2017/08/19 個人 テキストのみ。5と同じお客様。
7 1 2017/09/10 個人 テキストのみ。
8 2 2017/09/13 個人 テキストのみ。

S1_003書評:例題で学ぶ連続体力学(その3)

読みながらの書評なので、まとまりの無い文章になってしまいますが、又少し読み進みました。

従来「応力ベクトル」と呼んでいた物を「応力テンソル」との対比で「一体応力はベクトルなのかテンソルなのかどっちなんだい」という迷いが有りましたが、この本の説明では「表面力ベクトル」という説明だったので明解に成りました。(2.1.1項)

棒の応力とコーシーの応力がどう整合が取れるのかの説明が2.2.3項に明解に繰り広げられてました。実は、弊社ソフトMeshman_主応力にはコーシー応力と棒の応力を対比する機能が有るのですが、それをどう説明するかについて考えあぐねていました。本書の説明で非常に良いヒントを頂きました。

力の状態を説明するのに、点に付随する物理量のみでは駄目だという説明が非常に良かったです。詰まり、点に現れる力のベクトルは無数に存在するので、力の状態を表す物理量としては、扱い難いのです。結局断面を使用するという事なので、先刻承知という感じですが、このように説明されると妙に納得します。

例題が実に具体的で良いです。例題3.1を自分でも実際に解いてみました。
例題が易しそうに見える為、答えを見る前に自力で解いてみようという意欲が湧いて来ます。
結局間違えましたが、解説も非常に丁寧であり、最後迄読む気力を維持する事が出来ました。

紹介して無い部分でも良さそうな部分が有りますが、未だ上っ面しか読めておらず、ちゃんとした評価が出来ません。ここで一旦書評は終了したいと思います。