「計算力学技術者固体」カテゴリーアーカイブ

SE03_2016年計算力学固体2級短期合格対策講習会@刈谷のご案内

2016年日本機械学会計算力学技術者2級(固体力学分野)短期合格対策講習会のご案内

株式会社インサイトはこの度有限会社イワタシステムサポート様のご協力を得まして、中部地区で初の講習会を開催する事になりました。日本機械学会計算力学技術者2級(固体力学分野)受験者の為の短期合格対策講習会です。類似講習で過去に2級60%、1級100%の合格者を出しております。 対象者は以下の方です。
計算力学技術者2級の資格取得を目指される意欲有る方
会社で技術者のスキルアップの一環として上記試験を受講される方
本講習は試験対策として多くの事例を講義しますが、合格を保証する物では無い事を予めご承知おき下さい。

開催日: 11/7(月)-11/8(火)
場所: 刈谷市産業振興センター
時間: 10:00-17:00(昼食休憩時間1時間)
受講料: 63,770円(税込み)(テキスト込み)
講師: 株式会社インサイト代表取締役 三好昭生(博士(工学)、
(社)日本機械学会認定上級アナリスト(第14-SFEMs-9041(1)号))
日本機械学会計算力学技術者2級の付帯技能講習会の講師

受講条件:
日本機械学会発行、計算力学技術者2級(固体力学分野の有限要素法解析技術者)標準問題集1 第9版を所有している事。
高校で教える微分、積分、及び力学の知識を有する事。

開催条件:2016/10/31(月)迄に最低5名の申込者が有る場合にのみ開催します事をご了承下さい。

講習内容
基本的には座学のみです。講習開始時に簡単な問題を解いて貰う事で、受講者の知識レベルを把握して、なるべくその範囲に絞った講習内容となるように心掛けます。一部問題を解いてもらったり、指名して回答して貰ったりします。丸2日間では時間的に到底標準問題集の全問を扱う事は出来ませんので、なるべく均等にサンプリングして説明をします。
2級は単なる知識だけでは無く、問題数の多さから、受験のテクニックが重要となりますので、傾向と対策的な話がかなり多くを占めます。知識については、標準問題集の解説では分かりにくい知識間の関係や重要な概念、学ぶべき範囲、重要単語について説明します。
教材: 弊社オリジナルテキスト、 計算力学技術者2級(固体力学分野)標準問題集
受講後に期待出来る事
・勉強方法が明確になる。
・受験当日の作戦の立て方が明確になる。
・重要な点を把握・理解できる。
・試験範囲をざっとカバーした知識を得る。

主催:
株式会社インサイト
協力:有限会社イワタシステムサポート様

申し込み方法:
下記を記入して、support@meshman.jp(全て半角に変更して下さい)にお申し込み下さい。
件名: 2級短期合格対策講習会@刈谷
氏名:
連絡先住所:
同電話番号:
所属(個人での支払いの場合は省略も可):

S87計算力学固体2級_所有参考書籍リスト

弊社で所有していて主に参照している書籍リストです。

(1)「<解析塾秘伝>有限要素法に必要な数学」,小村政則,2012,日刊工業新聞社.
定価(本体2,200円+税)

(2)線形代数入門」有馬哲,1974,東京書籍.

(3)「計算力学 有限要素法の基礎(第2版)」竹内則雄,樫山和男,寺田賢二郎,2012,森北出版.
定価(本体3,400円+税)

この本は、標準問題集で参考文献として挙げられてますね。

(4)「塾長秘伝 有限要素法の学び方!―設計現場に必要なCAEの基礎知識」CAE懇話会関西解析塾テキスト編集グループ (著), 小寺 秀俊 (監修),2011,日刊工業新聞社.
定価(本体2,400円+税)

(5)「構造解析のための有限要素法実践ハンドブック」岸 正彦 (著),2006,森北出版.

(6)「エンジニアのための有限要素法」P.トン (著), J.N.ロセトス (著), 矢川元基 (翻訳),1983,共立出版.

(7)「機械設計における有限要素法の活用」チャールズ・E. ナイト (著), Charles E. Knight (原著), 酒井 信介 (翻訳),1997,森北出版.

(8)「有限要素法概説―理工学における基礎と応用 (FEM+BEM (3))」菊地 文雄,1999,サイエンス社.

(9)「有限要素法入門改訂版」三好俊郎,1994,培風館.

この本は、標準問題集で参考文献として挙げられてますね。

(10)「演習形式 材料力学入門」,寺崎俊夫,1992,共立出版.
定価(本体2,900円+税)

(11)「理論と実務がつながる 実践有限要素法シミュレーション―汎用コードで正しい結果を得るための実践的知識」泉聡志,酒井信介,2010,森北出版.

(12)「図解入門 よくわかる最新有限要素法の基本と仕組み―応力解析の実践とその手順を初歩から学ぶ」岸 正彦 (著),2010,秀和システム.

(13)「原子炉構造設計―数値解析から耐震設計まで」矢川元基,一宮正和,1989,培風館.

(14)「<解析塾秘伝>有限要素法のつくり方! -FEMプログラミングの手順とノウハウ-」石川博幸,青木伸輔,日比学,2014,日刊工業新聞社.

(15)「事例でわかる製品開発のための材料力学と疲労設計入門」鯉渕 興二,初田 俊雄,服部 敏雄,三浦 英生,小久保 邦雄,2009,日刊工業新聞社.

(16)「強度検討のミスをなくす CAEのための材料力学」遠田 治正,2015,日刊工業新聞社.

(2016/10/11追記)
(17)「図解 設計技術者のための有限要素法はじめの一歩 」栗崎彰, 2012, 講談社.

(2016/11/06追記)
(18)「弾性力学 (工学基礎講座)」小林 繁夫, 近藤 恭平, 1987, 培風館.
この本は、標準問題集で参考文献として挙げられてますね。問8-24の解説はこの本を参考にしてますね。

S86計算力学固体2級標準問題集第9版調査_5章解説索引

5章の解説の索引です。第8版は関係有りません。

項目 ページ  参考書籍での扱いページ
20節点六面体要素 200
8節点四辺形要素 201
Bマトリックス 199
Dirichlet 201
Gauss-Legendre 199
Hooke 203
isoparametric 199
isoparametric 200
Jacobi 199
Neumann 201
plate 203
serendipity 200
subparametric 199
superparametric 199
アイソパラメトリック要素 199
アイソパラメトリック要素 200
厚板 203
厚さ 203
圧縮応力 204
圧力 202
アルゴリズム 204
一次近似 201
薄板 203
右辺ベクトル 202
遠心力 202
応力-歪関係式 202
応力-歪関係式 203
温度 201
温度環境 203
温度分布 203
回転 203
ガウス-ルジャンドル積分 199
ガウス積分 199
荷重境界条件 201
荷重境界条件 202
活荷重 202
慣性力 203
完全多項式 200
完全二次 200
機械加工 203
既知外力 202
既知変位 202
基本境界条件 201
逆行列 199
境界条件 201
境界条件 202
境界条件 204
境界値問題 201
曲率 204
形状 199
形状 200
形状関数 199
形状関数 200
形状関数 201
高次 199
高次要素 200
剛性方程式 201
剛性方程式 202
剛性方程式 204
剛性マトリックス 202
拘束 201
拘束 202
拘束 203
拘束自由度 204
剛体移動 201
勾配 201
降伏応力 203
固有値 202
材料接合 203
座屈荷重 202
座標 199
座標変換マトリックス 199
サブパラメトリック要素 199
三角形一次要素 201
三角形要素 199
三次元ソリッド要素 204
三次元ソリッド要素 203
残留応力 203
残留応力 204
死荷重 202
自然境界条件 201
収縮 203
収縮 203
集中力 202
重力 202
縮小 202
純曲げ 200
消去 200
衝撃問題 203
初期応力マトリックス 202
初期歪 202
初期歪 203
初期歪 204
振動問題 203
隅節点 200
隅節点 201
スーパーパラメトリック要素 199
正規化局所座標 199
正規化局所座標 200
積分点 199
積分点数 200
接合 204
節点温度 203
節点座標 199
節点自由度 201
節点無し変数 200
節点変位 201
節点力 202
セレンディピティ要素 200
セレンディピティ要素 201
線形座屈解析 202
線形弾性解析 203
線形弾性解析 204
全体剛性マトリックス 200
全体剛性マトリックス 204
全体座標 199
剪断 199
剪断歪 203
全歪 203
線膨張係数 203
塑性 203
塑性歪 203
反り 203
第1種境界条件 201
第2種境界条件 201
対称 201
対称条件 201
体積力 202
多項式 200
縦弾性係数 203
多点拘束 203
弾性歪 203
低次 199
ディリクレ境界条件 201
等価節点力 202
二次元4節点アイソパラメトリック要素 199
二次元4節点要素 199
二次元8節点要素 199
二次元四辺形要素 200
二次元平面応力要素 203
二次元平面歪要素 203
熱応力 202
熱応力 203
熱伝導解析 203
熱伝導問題 201
熱伝導率 203
熱歪 203
熱流束 201
ノイマン境界条件 201
伸び 199
引張応力 204
歪-変位マトリックス 199
微分値 201
表面力 202
フックの法則 203
プリプロセス 204
浮力 202
プレート要素 203
分布力 202
変位 199
変位関数 199
変位境界条件 201
変位境界条件 202
変位適合性 200
変位補間 200
変形 199
辺上節点 200
偏微分 199
偏微分方程式 201
法線方向 201
法線方向 202
膨張 203
補間 199
補間 200
ポストプロセス 204
曲げ 199
曲げモーメント 204
未知外力 202
未知数 200
未知変位 202
密度 203
面外変位 203
面外変形 203
面積座標 199
ヤコビ行列 199
ヤング率 203
有限要素法 204
溶接 203
要素剛性マトリックス 200
要素剛性マトリックス 204
要素内部節点 200
要素内変位 199
ラグランジュ多項式 200
ラグランジュ補間 200
ラグランジュ要素 200
連成解析 203
連立一次方程式 200
連立一次方程式 204

S85計算力学固体2級標準問題集第9版調査_付録比較

 

第8版付録 第9版付録
前書 (-) 全く同じ
1.1力 (-) 全く同じ
1.2圧力 (-) 全く同じ
2.1一般化されたフックの法則 (-) 全く同じ
2.2.1 (-) 以下変更

「y軸とθだけ傾斜した面に生じる応力」->「x-y座標系を反時計方向にθだけ回転したx’-y’座標系での応力」

以下追加

\(
\sigma_{y’}=\sigma_x sin^2\theta + \sigma_y cos^2 \theta – \tau_{xy} sin2\theta
\)

2.2.2主応力 (-) 全く同じ
2.2.3主剪断応力 (-) 全く同じ
2.3.1 (-) 以下変更

「方向余弦(l,m,n)の面ABCに生じる応力ベクトルpの成分(コーシーの式)」->「方向余弦(l,m,n)の面ABCに生じる表面力ベクトルpの成分(コーシーの式)」

「τyx」->「τxy」

「τzy」->「τyz」

「τzx」->「τxz」

2.3.2 (-) 以下変更

「任意の面の法線x’の方向余弦を(l1,m1,n1)、この面内に取った2軸y’及びz’の方向余弦をそれぞれ(l2,m2,n2)、(l3,m3,n3)とすると、この面に生じる応力は」->「座標系(x,y,z)から座標系(x’,y’,z’)への応力の座標変換」

以下追記

新座標軸の旧座標軸に対する方向余弦の表

\(
\sigma_{y’}=l_2^2 \sigma_x  + m_2^2\sigma_y   + n_2^2\sigma_z + 2l_2 m_2 \tau_{xy} + 2 m_2 n_2\tau_{yz} + 2n_2l_2\tau_{zx}
\) \(
\sigma_{z’}=l_3^2 \sigma_x  + m_3^2\sigma_y   + n_3^2\sigma_z + 2l_3 m_3 \tau_{xy} + 2 m_3 n_3\tau_{yz} + 2n_3l_3\tau_{zx}
\) \(
\tau_{y’z’}=l_2l_3 \sigma_x  + m_2m_3\sigma_y   + n_2n_3\sigma_z + (l_2 m_3 + l_3m_2)\tau_{xy} + (m_2 n_3 + m_3n_2)\tau_{yz} + (n_2l_3 + n_3l_2)\tau_{zx}
\)

以下変更

「\(
\tau_{x’z’}=l_1l_3 \sigma_x  + m_1m_3\sigma_y   + n_1n_3\sigma_z + (l_3 m_1 + l_1m_3)\tau_{xy} + (m_3 n_1 + m_1n_3)\tau_{yz} + (n_3l_1 + n_1l_3)\tau_{zx}
\) 」->

「\(
\tau_{z’x’}=l_3l_ 1\sigma_x  + m_3m_1\sigma_y   + n_3n_1\sigma_z + (l_3 m_1 + l_1m_3)\tau_{xy} + (m_3 n_1 + m_1n_3)\tau_{yz} + (n_3l_1 + n_1l_3)\tau_{zx}
\) 」

 

2.3.3 (-) 以下追記

「次式を満足する3根」->「次式を満足する3根(σ123)」

以下変更

行列式において剪断応力が対称では無いようにτyxとτxy等が区別して書かれていた->行列式において剪断応力が対称であるようにτxy、τyz、τzxのみが使用されている

 2.4.1トレスカの降伏条件 (-) 全く同じ
2.4.2ミーゼスの降伏条件 (-) 全く同じ
3.1.1曲率 (-) 全く同じ
3.1.2ひずみ (-) 全く同じ
3.1.3応力 (-) 全く同じ
表3-1 (-) 全く同じ
表3-2 (-) 以下変更

「Fmax = -W」->「|F|max=W」

「-Mmax = -Wl」->「|M|max=Wl

-Fmax = -wl」->「|F|max=wl

「-Mmax = -wl2/2」->「|M|max=wl2/2

0<x<l/2:-F = W/2」->「0<x<l/2:F=W/2

l/2<x<l:-F = -W/2」->「l/2<x<l:F=-W/2

0≦x≦l/2:-M = Wx/2」->「0≦x≦l/2:M=Wx/2

l/2≦x≦l:-M = W(l-x)/2」->「l/2≦x≦l:M = W(l-x)/2

x=l/2:-Mmax = Wl/4」->「x=l/2:|M|max = Wl/4

0≦x≦l/2:-v=\(\frac {Wl^3}{48EI} (\frac{3x}{l} – \frac{4x^3}{l^3})\)」->「0≦x≦l/2:v=\(\frac {Wl^3}{48EI} (\frac{3x}{l} – \frac{4x^3}{l^3})\)

以下3のたわみに追記

l/2≦x≦l:v=\(\frac {Wl^3}{48EI} \{\frac{3(l-x)}{l} – \frac{4(l-x)^3}{l^3}\}\)

4.1円板 (-) 以下変更

D=Eh/12(1-ν2)」->「D=Eh3/12(1-ν2)

表4-1 (-) 全く同じ
5.1 丸棒のねじり (-) 記号の定義を追記、詳細は略。

以下削除

「T=WL」

以下追記、但し別の式と重複しており、不要。

\(\tau_{max}\frac{2\rho}{d}=\frac{T}{I_p}\rho\)

6.1圧力をうける厚肉円筒の応力 (-) 以下削除

「内圧pa」->「内圧」

「外圧pb」->「外圧」

(-)7.ばね この章削除
8. 薄板構造 7. 薄板構造
平板中の穴による応力集中 8.1 7.1(内容は変更無し)
表8-1 穴周りの応力集中 表7-1 穴周りの応力集中
8.2 回転面殻の内力 7.2 回転対称殻の応力
表8-2 回転面殻の内力 表7-2 回転対称殻の応力(膜理論による解)
新表7-2 以下変更

「たが張り応力σφ」->「周方向応力\(\sigma_\varphi\)」

「\(\frac{p(r^2-c^2)}{2rtsin\alpha}\)」->「\(\frac{pa(r+c)}{2rt}\)」

「\(\frac{pr}{tsin\alpha}(1-\frac{r^2-c^2}{2arsin\alpha})\)」->「\(\frac{pa}{2t}\)」

「\(y=\frac{3}{4}h:-\)」->「\(y=\frac{3}{4}h:\)」

「\(y=\frac{1}{2}d:-\)」->「\(y=\frac{1}{2}d:\)」

S84計算力学固体2級標準問題集勉強法について_04勉強の作戦

標準問題集の第8版と第9版の比較はほぼ終わりに近づいて来てます。付録の公式集も改訂されているのにはびっくりしました。

索引はまだ5章で先は長いです。

今初学者が効率良く学ぶ方法を考えています。

(1)良い本で勉強する事。
(2)関連分野の語彙力をつける事。
(3)出題されるであろう範囲をはっきり認識する事。
(4)理解し易い順序で学んで行く事。

以上は試験とは直接の関係は有りません。試験対策としては、
(5)勉強不足の分野でもロジックと山勘を駆使して正解に辿り着く方法を身に着ける事。
(6)必要な暗記はするが、暗記は最小限に止める事。
(7)時間配分の判断力を身に着ける事。時間の掛かる問題は後回しにする。
(8)苦手な分野は思い切って捨てるという作戦も有りです。
(9)手を動かす訓練をする事。頭の中で分かった積りでは実戦力が足りません。

こんなところでしょうか。

今注目しているのは、有限要素法では、

「有限要素法入門改訂版」三好俊郎,1994,培風館.

で、材料力学では、

「演習形式 材料力学入門」,寺崎俊夫,1992,共立出版.
です。いずれも新刊で買えます。全部読み切った訳では無いですが、導入部が良い感じです。

 

S83計算力学固体2級標準問題集勉強法について_03重要単語集11-20

11番から20番です。

作成方針は、1から10番をお読み下さい。

番号 名称 意味
11 降伏 例えば鋼に応力を加えていくと、応力がある点に至ると歪は大きくなるのに対し引張応力は下降する。このとき鋼は降伏したという(Wikipedia降伏)
12 Mpa N/mm^2に等しい。応力やヤング率の単位として実用上最も良く使われる。
13 物性値 物質が持っている性質をある尺度で表したもの(Wikipedia物性値)
14 元々建物の水平部材を指す。長さに比べて幅や厚さが小さい棒状の部材であり、主に棒の長さ方向に垂直な力を担う
15 外力 物体または物体系に外から加えられる力(Wikipedia外力)
16 内力 多数の部分から構成される力学系をある範囲で内部と外部に分けるとき、内部の部分同士に働く力
17 応力(再) 単位面積当たりの内力
18 作用・反作用の法則 物体Aが物体Bに力(作用)を及ぼす時、物体Bは物体Aに大きさが等しく、向きが反対の力(反作用)を及ぼす
19 物体力 物体に接する事無く、内部に直接作用する力
20 釣合い方程式 物体力を受けて静的な釣り合い状態にある物体内部の任意の点で、応力と外力が満足する方程式の事

 

 

 

 

 

 

S82計算力学固体2級標準問題集第9版調査_13章解説比較

13章の解説を比較します。

第8版 第9版 第8版解説 第9版解説
13-1(新規)技術者倫理
13-1 13-2 (-) 全く同じ
13-11 13-3 (-) 全く同じ
13-9 13-4 (-) 全く同じ
13-10 13-5 (-) 全く同じ

誤記

「③…自己防衛の最善の手段して」->「③…自己防衛の最善の手段として」

13-2 13-6 (-) 全く同じ
13-3 13-7 (-) 全く同じ
13-4 13-8 (-) 全く同じ
13-5 13-9 (-) 全く同じ
13-6 13-10 (-) 全く同じ
13-7 13-11 (-) 全く同じ
13-8 13-12 (-) 全く同じ

S81計算力学固体2級標準問題集第9版調査_12章解説比較

12章の解説を比較します。

2016/09/25に第8版問12-16が削除で無く問12-26への変更であると訂正したが、訂正が不十分であったのを修正した(2016/12/04)。

第8版 第9版 第8版解説 第9版解説
12-6 12-1 (-) 全く同じ
12-7 12-2 (-) 全く同じ
12-8 12-3 (-) 全く同じ
12-9 12-4 (-) 以下「桁落ち」に追記

「現在では計算機の浮動小数点規格はIEEE754が用いられる場合が多い。IEEE754では64bit計算の場合、有効数字は約16桁、指数の範囲は10の-308~308乗である。

12-17 12-5 Windows 2000->Windows (-) 全く同じ
12-27 12-6 (-) 全く同じ
12-7(新規)CPU
12-8(新規)64ビット計算機
12-9(新規)高速化方式
12-25 12-10 (-) 全く同じ
12-26 12-11 FD->USB、MO->BD (-) 以下追記

CD-RとCD-RWに「650Mバイト」->「650バイトまたは700Mバイト」

以下修正と追記

DVD-RAMに「主に5.2Gバイト」->「主に4.7Gバイト(片面)または9.4Gバイト(両面)」

以下項目追記詳細は略。

USBメモリとBD

以下項目削除詳細は略。

FDとMO

以下変更

正解が②->③

12-32 12-12 ハードウェア->コンピュータ (-) 全く同じ
12-33 12-13 (-) 以下旧問12-28の解説の内該当する部分が移動して来た。

Windows、Unix、BSD及びLinuxの成り立ち。詳細は略すが、Windowsの最新版がVistaから10に変更されている。

12-29 12-14 (-) 以下変更

「①前問②参照、②前問①参照」->(1行にまとめて)->「①、②前問解説参照」

旧前問とは12-28の事であり、新前問は12-13の事である。旧12-28は削除された。

「④前問④参照」->「④前問解説参照」

12-30 12-15 (-) 全く同じ
12-31 12-16 (-) 全く同じ

新旧とも誤植有り

「コカレントエンジニアリング」->「コンカレントエンジニアリング」

12-23 12-17 (-) 全く同じ
12-20 12-18 (-) 全く同じ
12-19 12-19 (-) 全く同じ
12-22 12-20 (-) 全く同じ
12-21 12-21 Assembla->Assembler (-) 全く同じ
12-34 12-22 (-) 全く同じ
12-35 12-23 (-) 全く同じ
12-14 12-24 (-) 全く同じ
12-15 12-25 (-) 全く同じ
12-16(2016/09/25訂正) 12-26 (-) 全く同じ
12-18 12-27 (-) 全く同じ
12-1 10-21
12-2(ファイル形式) (削除)
12-3(ファイル形式) (削除)
12-4 10-22
12-5 10-23
12-10 (8/12訂正:)10-3
12-11 10-4
12-12 10-1
12-13 10-2
12-24 (記憶媒体) (削除)
12-28 (OS) (削除)

S80計算力学固体2級標準問題集勉強法について_02重要単語集01-10

独断と偏見で重要な単語ランキングを作成します。最低200語は作りたいと思います。10語単位で公開します。

膨大な文献の調査とか統計処理とかは行っておりませんので誤解されませんようお願い致します。

但し筆者の直感に基づく若干の文献調査は行っております。今後の調査の結果により語順や説明文の変更は有り得ます。

単語の意味の説明ですが、ランクが高い程、初学者向けの説明にしたいと思ってます。初学者向けの説明とは、分り易さを重視して正確性は二の次にするという事です。上位ランクの単語の説明に下位ランクの単語は使用しません。

文献に適切な意味を見つけた時は、そちらを採用しますが、初学者向けの説明の要件を満足する為に、オリジナルの説明になる事が多いと思います。

文献

(1)「機械設計における有限要素法の活用」チャールズ・E. ナイト (著), Charles E. Knight (原著), 酒井 信介 (翻訳),1997,森北出版.

(2)「図解入門 よくわかる最新有限要素法の基本と仕組み―応力解析の実践とその手順を初歩から学ぶ」岸 正彦 (著),2010,秀和システム.

番号 名称 意味
1 要素 小さな領域(1)p1
2 応力 単位面積当たりの力(2)p14
3 節点 要素を構成したり、結合する為の点
4 変位 物体の位置の変化の事(Wikipedia変位)
5 物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す量の事(Wikipediaひずみ)
6 荷重  物体を変形又は移動させる作用の事
7 フックの法則  荷重が変位に正比例する関係の事。比例係数をバネ値と言う。
 8  ヤング率(縦弾性係数)  材料固有の硬さを表す数値
 9  ポアソン比 荷重に直交する方向の歪を荷重に沿った歪 で割った比率。材料固有の数値。
10  弾性  荷重除去後に歪がゼロに戻る特性の事

S79計算力学固体2級標準問題集第9版調査_5章問題索引

5章の問題の索引です。第8版は関係有りません。

項目 ページ
20節点六面体要素 56
4節点アイソパラメトリック要素 52
4節点アイソパラメトリック要素 53
4節点アイソパラメトリック要素 55
4節点四辺形要素 51
4節点要素 51
8節点四辺形要素 51
8節点四辺形要素 56
8節点要素 51
Bマトリックス 54
アイソパラメトリック 51
アイソパラメトリック要素 54
アイソパラメトリック要素 56
厚板 62
圧縮応力 63
圧力 60
一次近似 56
一対一 51
薄板 62
右辺ベクトル 59
遠心力 60
応力-歪マトリックス 61
温度 57
温度 61
温度 62
温度環境 62
外力 58
ガウス積分点 52
荷重 58
荷重境界条件 59
荷重ベクトル 59
既知変位 58
境界 59
境界条件 56
境界条件 58
強制変位 58
強制変位 59
局所座標 51
局所座標 54
形状 51
形状関数 51
形状関数 52
形状関数 53
形状関数 54
形状関数 55
形状関数 56
高次 51
剛性方程式 58
剛性方程式 59
拘束 56
拘束 57
剛体移動 57
降伏応力 60
固定 59
材料定数 60
座標変換 52
三次元ソリッド要素 61
三次元ソリッド要素 62
三次元ソリッド要素 62
残留応力 62
死荷重 60
自由度 56
重力 60
常温 62
初期歪 61
初期歪 62
数値計算誤差 60
隅節点 56
正規化局所座標 51
正規化局所座標 52
積分点 56
接合 61
節点温度 57
節点座標 51
節点無変数 55
節点変位 51
セレンディピティ要素 56
線形弾性解析 62
全体剛性マトリックス 55
全体座標 51
全体座標 52
全体座標 54
剪断 53
線膨張係数 60
線膨張係数 61
線膨張係数 62
反り 62
ソリッド要素 56
第1種境界条件 56
第2種境界条件 56
対称 57
体積力 60
低次 51
ディリクレ境界条件 56
ディリクレ境界条件 57
等価節点力 59
等価節点力 60
二次近似 56
二次元弾性問題 54
二次元平面応力要素 62
二次元平面歪要素 61
二次元平面歪要素 62
熱応力 60
熱応力 61
熱伝導問題 57
熱伝導率 61
熱歪 60
熱歪 61
熱膨張 62
熱流束 57
ノイマン境界条件 56
ノイマン境界条件 57
引張応力 63
引張荷重 63
歪-変位マトリックス 51
歪-変位マトリックス 54
浮力 60
プレート要素 62
分布力 60
変位 58
変位関数 51
変位関数 56
変位適合性 55
変位ベクトル 59
変形 60
変形モード 53
変形モード 55
偏微分 54
法線方向 60
曲げ 53
未知変位 58
未知変位 59
密度 60
面外変形 62
面積座標 51
面内変形 62
ヤコビマトリックス 51
要素 51
要素剛性マトリックス 55
要素の辺 60
要素の面 60
要素分割 57
連立一次方程式 55
連立方程式 59