A17_ADVENTURE_on_Windows解析例(4)

立方体の中に円柱を内包する部材の応力解析を行いました。
複合材料を想定して母材はエポキシとし、円柱は炭素繊維としました。

図-1に示すように4つのボリュームに分けないとADV_on_Winではメッシュが切れません(と思ってましたが、この認識は後で間違いであると判明しました。しかしやり掛けたので取り敢えずこの形状で解析を進めます)。青をVolume 0、青緑をVolume1、黄緑をVolume2、赤をVolume3とします。

SolidPcm
図-1 各ボリュームの識別図(この図はMeshman_ParticleViewer_HPCで表示してます)

立方体は1辺が40mm。円柱は、直径が20mm、長さが20mmです。炭素繊維にしては太過ぎますがご勘弁を。

Volume0.gm3dファイルです。1辺が40mmの立方体をY=0の平面で半割にし、負の領域だけ取り出した物に更に半径10mm、長さ10mmの円柱状の刳り貫き(くりぬき)を形成した物です。円柱は正36角柱で近似しております。

box -20 -20 -20  40 20 40
circle 0 -10 0  10 0 0  0 1 0 36
extrude 0 10 0
subtract

Volume1.gm3dファイルです。Volume0.gm3dの2行目と3行目と同じですね。Volume0の刳り貫き部にぴったり嵌る円柱です。繊維と言うには太いですが、例題なのでご勘弁を。

circle 0 -10 0 10 0 0 0 1 0 36
extrude 0 10 0

Volume2.gm3dファイルです。Y=0の平面に関してVolume1.gm3dと対称な形状です。

circle 0 0 0  10 0 0  0 1 0 36
extrude 0 10 0

Volume3.gm3dファイルです。Y=0の平面に関してVolume0.gm3dと対称な形状です。

box -20 0 -20 40 20 40
circle 0 0 0 10 0 0 0 1 0 36
extrude 0 10 0
subtract

こう言う形状データ記述方式は、一見すると大変なのですが、データの修正が本当のCADを操作するより楽だと思います。

新規解析ケース作成に於いては、形状モデルとして「ADV_Cad」を選択します。

基本節点間隔は3mm。

AdvCADファイル選択では、Volume0.gm3d~Volume3.gm3dをこの順序で指定します。この順序以外は試してません。

表面パッチ生成後、メッシュ生成。

生成要素数は、15,081個、節点数は、22,748個。表面形状補正にチェックを入れないとメッシュ生成に失敗します。

物性値を材料ID毎に入力します。

材料ID0と材料ID3はエポキシで同じ材料、材料ID1と材料ID2はカーボン繊維で同じ材料。

エポキシ樹脂のヤング率出典
https://www.kda1969.com/materials/pla_mate_ep2a1.htm
2400MPa

同ポアソン比
https://seihin-sekkei.com/plastic-design/poissons-ratio/
0.33~0.39の平均を取って0.36

カーボン繊維のヤング率出典
http://www.super-resin.co.jp/frp
PAN系は230~550GPa=230,000MPa ~550,000MPa
平均を取って390,000MPa

カーボン繊維のポアソン比出典
http://www.toyobo.co.jp/seihin/kc/pbo/zylon-p/bussei-p/ud.pdf
3-1-2の図より0.29と判断する。

境界条件の設定。

ConstraintOnMinYPlane
図-2 拘束面の選択(面グループ番号=1)
xyzConstraintOnFaceGroup1MinYPlane
図-3 拘束条件(XYZ拘束)
LoadOnMaxYPlane5
図-4 荷重面の選択(面グループ番号=5)

荷重は円柱をY軸方向に引っ張ります。

load1InPlusYOnFaceGroup5
図-5 荷重条件(+Y方向に1MPa)
BCinCndFormat
図-6 境界条件リスト

炭素繊維の方がエポキシより硬いので、Y=最大値の面のY変位は真ん中が窪みます。

DispY
図-7 Y変位(0~0.0152mm、拡大率=753倍)

外表面には最大応力点は有りません。

MisesStress_01
図-8 ミーゼス応力(0.0953~5.55MPa)
MisesStressOnMidY
図-9 ミーゼス応力Yの真ん中辺の断面図(Meshman_ParticleViewer_HPCによる表示)

2つの材料の境界で応力が高くなっています。

MisesStressSectionOnMidXplane
図-10 ミーゼス応力Xの真ん中辺の断面図(Meshman_ParticleViewer_HPCによる表示)
MisesStressOnMidZ
図-11 ミーゼス応力Zの真ん中辺の断面図(Meshman_ParticleViewer_HPCによる表示)

Meshman_ParticleViewer_HPCだと図-12のようにエポキシを除去したコンター図の表示も可能です。

MisesCylinderOnly
図-12 ミーゼス応力円柱のみ(Meshman_ParticleViewer_HPCによる表示)
MaxMisesStress
図-13 最大ミーゼス応力点(Meshman_ParticleViewer_HPCによる表示、ピンクの点)
StressYY_01
図-14 応力-YY成分(拘束面に分布有り、-0.0291~4.17MPa)

最大主応力は、応力-YY成分と似てます。やはり応力分布の傾向は主応力を見なくてはいけません。

MaxPrincipalStress
図-15 最大主応力(0.0763~4.39MPa)
MidPrincipalStress
図-16 中間主応力(-2.35~1.32MPa)
MinPrincipalStress
図-17 最小主応力(-2.80~0.914MPa)